Average Collision Cost Methodology for Calculating B/C's

Local HSIP Projects

Comparing Crash Percentages State vs Local Roadways

- Lack of roadway inventory and exposure data (roadway features, traffic volumes, roadway relies and) miles, etc)
- > It is not feasible to calculate average collisions costs
- The previous graphs show that percentages are very similar between state and local roadways
- Because of similarities, using state highway average collision costs can be a basis for using these costs on local roadways.

State HSIP Program

- 1. <u>Network Screening</u>
 - Identifying Hotspot or Blackspot locations
 - Comparing similar facilities • Number of crashes over a time period
 - Traffic Volume

 - · Corridor Improvements(Systemic Approach Proactive)
- > 2. Prioritization of Needs
 - State Average Cost Methodology B/C tool is used to rank and prioritize projects for funding
 - Rural Highway Collisions Costs Fatal: \$10,279K, Injury: \$204K, PDO: \$11K Average Costs for Rural Conventional Highway: \$319K -
 - \$350K

Local Roadway Existing B/C Methodology

• HEAVY emphasis on a fatal collisions and fatal collision cost (11.5 times higher than all others combined):

- Fatal : \$4,008 K
- Severe/Disabling Injury(A) = \$216 K
- Evident Injury Other Visible(B) = \$79 K
- Possible Injury Complaint of Pain (C) = 44 K
- Property Damage Only (O) = \$7.4 K

Local Roadway Existing B/C Methodology

- Using the fatal cost in the B/C calculation can lead to the tendency to focus on collisions experiencing fatal collisions.
- Missed opportunities A location could be the local agency's top priority but without a fatal collision, getting a qualifying B/C can be difficult.

Local Roadway Existing B/C Methodology

• Example of an Cycle 6 funded project:

Rural Roadway: Install High Friction Surface Treatment, Project Cost =\$750,900

- \$750.900 ay: instant ingrit receive Saface Prediment; hoject cost
 \$ years of collision data
 21 total collisions, 2 fatals, 0 Incapacitating injury, 9 Non-capacitating injury, 10 bosible injury, 0 PoO
 total Benefit for a 10 year life of project = \$5.5 million
 \$ by = x_1 x_2
 Same project: Install High Friction Surface Treatment (no fatals but 2 were Incapacitating Injury collisions)
 \$ years of collision data
 21 total collisions, 0 fatals, 2 Incapacitating injury, 9 Non-capacitating injury, 10 possible injury, 0 POS
 Total Benefit for a 10 year life of project = \$955,200
 8/C = -1.3

 - Total Berre...
 <u>B/C = 1.3</u>
- B/C difference of 6.0 Without the fatal collisions, project would likely not have been submitted as an HSIP safety project

	Average Collision Cost Groups					
Percent Fatal	Percent Injury	Percent PDO	Facility	Average Collision Costs		
	Roadway Segments					
2.4	42.8	54.8	Rural Roadway	\$	340 K	
0.81	41.6	57.6	Urban Roadway	\$	162 K	
	Intersections					
1.4	35.5	63.1	Rural Non-signalized	\$	226.6 K	
0.8	37.0	62.2	Urban Non-signalized	\$	143.3 K	
0.7	38.5	60.8	Rural Signalized	\$	156 K	
0.6	40.0	59.4	Urban Signalized	\$	121.6 K	

Applying Average Collision Cost Method to Cycle 6 Project

Rural Local Roadway Example

High Friction Surface Treatment, 21 collisions over 5 years, Project Cost = \$750 KB/C = 7.3

Same project: Shoulder Widening (without fatals) $B/C\,=\,1.3$

Using Average Collision Methodology, 21 collisions over 10 years, Project Cost = \$750K, Average Collision Cost per collision = $\underline{$340 \text{ K}}$

B/C = 5.7

Applying Average Collision Cost Method to Cycle 6 Project

Urban Local Intersection Example

Upgrade traffic signals at 5 intersections(convert to mast arm), 74 collisions over 10 years, Project Cost =~\$770 K B/C = 12.4

Same project: (without fatals) $B/C\,=\,3.5$

Using Average Collision Methodology, 74 collisions over 10 years, Project Cost = \$770K, Average Collision Cost at Signalized Urban Intersection is $\frac{$121.6 \text{ K}}{2}$

B/C = 7.0

